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Formation of a Random Tree

Start with a single node, the root

Nodes are added one at a time
Each new node links to a randomly-selected existing node

A single connected component with N nodes, V-1 links
Degree distribution is exponential
N = 9+

In-component degree distribution is power-law
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Fragmentation of a Random Tree
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® Nodes are removed one at a time: many previous studies
on removal of links [Janson, Baur, Bertoin, Kuba]

® VWhen a node is removed, all links associated with it
are removed as well

® Random Forest: a collection of trees formed by the
node removal process

® Degree distribution of individual nodes is known
(Moore/Ghosal/Newman PRE 2006)

What is the size distribution of trees in the forest!?



Main Result:
Size Distribution of Trees in Random Forest
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Removal of a Single Node

Remove a single, randomly-chosen, node from a
random tree with N nodes

Let P n be the average number of trees with size s

Two “conservation’ laws
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tree with N nodes has N-1 links removal of a single node
every link connects two nodes reduces total size by /

Recursion equation (add node to original random tree)

N s —1 N — s 1
Ps — PS— | PS | S S
N+1 N+1< N 1N N ,N) N1 (051 + 0s. W)

existing trees new trees
grow in size due to new node attributed to new node




Size Distribution of Trees

® Manual iteration of recursion equation gives
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® By induction: incredibly simple distribution
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® Scaling form
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The Scaling Function




Iterative Removal of Nodes

Remove randomly-selected nodes, one at a time

Key observation: all trees in the random forest are
statistically equivalent to a random tree!

Treat the number of removed nodes as time ¢

Let F; y(t) be the average number of trees with size s at time ¢

A single conservation law
Y sFon(t)=N—t

® ® S
Recursion equatlon (represents removal of one node)
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Rate Equation Approach

Take the infinite tree-size limit: N — o
Treat time as continuous variable

Recursion equation becomes a differential equation
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Problem reduces to the differential equation
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fragmentation kernel = size distribution, single node removal
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The Size Distribution

® Miraculously, exact solution of the rate equation feasible
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Addition and Removal of Nodes

® Addition: Nodes are added at constant rate r»

® Removal: Nodes are removed at constant rate /
® Outcome: random forest with growing number of nodes

® Straightforward generalization of rate equation
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® Normalized distribution of tree size decays exponentially
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Summary

Studied fragmentation of a random tree into a random forest

Nodes removed one at a time

Distribution of tree size becomes universal in the limit of
infinitely many nodes

Distribution of tree size has a power law tail

Exponent governing the power law depends only on the
fraction of remaining nodes

Rate equation approach is a powerful analysis tool



